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A comparative study is presented of the various recently developed open-shell perturbation theories
that are based on a restricted Hartree-Fock reference wave function. Included in this study are
issues concerning spin contamination, implementational considerations, and numerical comparisons
at the second-order of perturbation theory for equilibrium geometries, vibrational frequencies, and
singlet—triplet energy differences. Based on all of these considerations, it is concluded that the
z-averaged perturbation theory (ZAPT) method is to be preferred over the other recently devised
spin—orbital perturbation theories, while the spin-free OPT2 method possesses some advantages and
disadvantages relative to the ZAPT method. In particular, it is shown that OPT2 energies are not
invariant to rotations among singly-occupied degenerate molecular orbitals.

I. INTRODUCTION

There has been considerable interest recently in formu-
lating an open-shell perturbation theory that is based on a
restricted Hartree—Fock (RHF) reference wave function.!™¢
There has also been much interest in developing an efficient
and accurate multireference perturbation theory (e.g., see
Refs. 7-13), but we shall limit our discussion here to single-
reference based approaches. The methods that have been de-
veloped thus far may be placed into two classes, those that
use a configuration state-function (CSF) basis'® (i.e., S?
eigenfunctions), and those that use a spin—orbital determi-
nant basis.>~*S Approaches in the first group include the
OPT1 and OPT2 methods of Murray and Davidson,’ as well
as the method proposed by Hubac and Carsky.! The RMP;?
ROMP? and ZAPT (Ref. 6) methods comprise the second
group (note that the ROHF-MBPT method of Bartlett and
co-workers* gives identical energies to the RMP method).
However, based on the evidence available thus far,z"s"“"7
the success or nonsuccess of a particular perturbation theory
is not determined by the choice of n-particle basis, but rather
is determined by the choice of the diagonal matrix elements
that make up the denominators. In other words, it has been
shown empirically that a given perturbation series typically
converges more rapidly the larger the denominators (with the
proviso, of course, that the denominators are still physically
meaningful and not simply large numbers)."* Larger denomi-
nators certainly require that the second-order correlation en-
ergy be smaller in magnitude, but these perturbation series
also show few if any oscillations (for example, see Refs.
2,3,15,18). Based on these analyses and alsc on some nu-
merical tests, it has been asserted'>'> that the perturbation
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series for the OPT1 method and also the method of Hubac
and Carsky will not converge as rapidly as the perturbation
series for the other methods (i.e., OPT2, RMP, ROMP, and
ZAPT).

As well as convergence of the perturbation series, there
are several other aspects to consider when evaluating RHF
open-shell perturbation theories. As mentioned above, some
of the methods (OPT! and OPT2) posses nth-order wave
functions that are eigenfunctions of §%, which is important if
spin-dependent properties are to be investigated. Several of
the methods (OPT1, OPT2, and ZAPT) require that the spa-
tial parts of a and B spin-orbitals be identical, which has
obvious computational advantages. Finally, some of the re-
cently developed RHF open-shell perturbation theories
(RMP and ROMP) possess different a and S spatial orbitals,
as well as having nth-order wave functions that are not $°
eigenfunctions, but their perturbation series have been
shown®>!% to converge much more rapidly than conventional
unrestricted Méller—Plesset (MP) perturbation theory. It
should also be mentioned that spin projection of the unre-
stricted MP series has been investigated,'® but because these
methods are limited in the number of spin contaminants pro-
Jjected out, the perturbation energies lose the property of size-
extensivity (as discussed by Schlegel'®). Size-extensivity has
been shown to be an important property over the last several
years (especially when treating a large number of electrons),
and therefore these partially projected schemes do not appear
promising.

The determinant based methods, ZAPT, ROMP, and
RMP, are all quite similar in their formulation. RHF open-
shell molecular orbitals are employed and H, is defined from
diagonal elements of the spin—orbital Fock operator. How-
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ever, the wave functions in ZAPT are S, eigenfunctions
whereas those in RMP and ROMP theory are S, eigenfunc-
tions. RMP and ROMP differ only in their choice of canoni-
calization procedure for the molecular orbitals.

The purpose of the present investigation is to evaluate
the different RHF open-shell perturbation theories in three
areas. (1) The degree of spin contamination, or in other
words, how does the spin contamination appear and at what
order are the energy and perturbed wave function affected;
(2) the computational cost of each method and how this com-
pares to the computational cost of a closed-shell RHF MP
calculation, as well as other implementational consider-
ations; (3) the quality of numerical results obtained from
each method at second-order, and how they compare to ex-
periment when using large one-particle basis sets. These
three aspects are discussed in the following three sections,
respectively, while our conclusions are given in the final sec-
tion.

Hi. SPIN CONTAMINATION

The spin properties of the OPT1 and OPT2 methods
have been discussed in detail previously.® Because Hy is in-
dependent of spin in these theories, the nth-order perturbed
wave functions ¥, will be $? eigenfunctions, and there is no
spin contamination. For all of the determinant based methods
(i.e., RMP, ROMP, and ZAPT), H, is spin dependent and
does not commute with S2. Thus, all of these methods will
possess some degree of spin contamination. It has been noted
(e.g., see Refs. 3,4,6) that since the reference function is an
S§? eigenfunction, the perturbation series is automatically spin
projected. Thus the projected nth-order energy E, and the
unprojected nth-order energy E, are the same,

EnE(‘POI VO!‘I’,,_ l)
=<W0|(H‘H0)0|‘Pn-1>=(‘[’0|(H—EO)OI‘I’,.— 0
=<WOIO(H“EO)I‘I’n—1>=(W0|V|‘I’n~1>=5n- (N

In the above equations, we have used the fact that O (the
projector which enforces spin symmetry) and H commute,
and the fact that ¥ is a spin and H eigenfunction. However,
as discussed by Murray er al.,'*'> the above proof shows
only that there will be no direct contribution from a spin
contaminant. In fact, the first and higher-order perturbed
wave functions are contaminated, so that there will be an
indirect contribution from spin contamination to E; and
higher-order energies. Interestingly, E, will not contain any
contamination under these conditions. This is discussed in
more detail later.

First, we examine which parts of H,, introduce spin con-
tamination in the various theories. Employing the language
of second quantization, H, for ZAPT may be written in the
form

H0= EiEii+ eaEaa+%( 6: + Gx_)E,\'S+2l( E_\-+ - E;)E” 4
(2
where indices i, a, and s refer to doubly occupied, virtual,
and singly occupied spatial orbitals, respectively, and sum-

mation over these indices is implied. The eigenvalues € are
defined as the appropriate diagonal elements of th: ZAPT
canonicalized spin—orbital Fock matrix,®

€=Fli=Flj e=Fi=F,
. . . 3)
_ 5o ~ 0o
€ =F .+, €=F"_.

E,, are the standard unitary group generators (p and q refer
to any spatial molecular orbital)

E,y=(pa)(qga)+(pB)(¢B) (4)

and E pq are spin—flip analogs of the U(n) generators defined
previously®

E,.=(pa)'(gB)+(pB)(ga). (5)

Also, recall that the o* and o~ spin functions were defined?’
according to

a*=7'5(a+ﬂ>, (®)
R ,
o =75 (ap). ™

It is well known that the E pq Benerators commute with § 2
however, it was shown® that the spin—flip analogs £, do
not commute with S% Thus, it is evident that the ZAPT H,
does not commute with S? and that only the last terr of H
will give rise to spin contamination. Note that the OFT] H,
is obtained by deleting the last term in Eq. (2). It is also
interesting to note here a significant difference between
ZAPT and the RMP and ROMP methods. Due to the fact that
the {fi, f:g} and {£35, f‘a'g} pairs of Fock matrix elements are
different in RMP and ROMP theory, their H, will contain
significantly more terms, relative to ZAPT, that do not com-
mute with §2. For example, the RMP or ROMP H,, riay be
written as

Ho=f Ei+ i Eaat [ Est f7 B+, Eq+ £ EL,

(8)

where
[y =X+ 128), 9)
[y =5 fa=1r8), (10)
E,=(pa)(qa)~(pB)t(gB), (11)

where szgg} are the appropriate spin—orbital Fock matrix
elements. Alternatively, the RMP or ROMP Hy may be writ-
ten in z-averaged form (see Ref. 20),

Ho=fEi+ [ Eaut fTEs+ T Eiit f Ega+ fTE .
(12)

Because S? does not commute with either E pq OF E .. spin
contamination arises from all of the molecular orbitals, not
just from the singly occupied orbitals as is the case for
ZAPT. Of course, this in itself does not prove that spin con-
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tamination in the RMP and ROMP methods will be numeri-
cally larger than for ZAPT, but it is suggestive.
For completeness, the OPT2 choice for H, is given by

H(J: EiEii+ 6‘uEaa_{b;—( E: + G.s_)Ex.s
—5(€ — € VE(E,—2). (13)

Although this H, has no spin-symmetry breaking parts, and
similar to ZAPT allows two eigenvalues to be associated
with a singly occupied orbital, these advantages have been
achieved at the expense of introducing a more complicated
two-particle H,.

Next, we examine how spin contamination enters the
first-order wave function as a result of using a spin depen-
dent H,. The general expression for the first-order wave
function is

¥, =R 'V¥,, (14)
where

R '=P(E,—H,) " 'P, (15)

V=(H-H,), (16)

P=1—|W )Wyl (17)

The operator R ™' is the resolvent, and is a pseudoinverse. V
is the perturbation, and P is the projector onto the orthogonal
complement of ¥, which defines the domain of the resol-
vent. Examination of the commutator [$?, R ™'V] gives

[S*.R™'V]=R'[$2V]+[S2.R™ "IV
=—R7'[8%,Hy]-R™'[S2,RIR™'V
=—R7'[S%LH+R[S%LH)R 'V
=R™'[S*.HI(R™'V-1), (18)

where we have used the fact that S? commutes with & and P.
We have also used the identities

[A,BC]=B[A,C]+[A,B]C,

[A,B"']=—B"'[A,B]B™". (19)

The latter identity may be used even with a pseudoinverse, as
here, provided that A commutes with the projector defining
the pseudoinverse domain. Using the above results, it is eas-
ily shown that

S =5(s+ )W, +R[S%,H,]¥,. (20)

This shows that the first-order wave function is contami-
nated, in general, because S2 does not commute with Hy, and
that the contamination is proportional to the product of the
resolvent and the commutator of S? and H,,. This is a general
expression valid for any spin-—orbital perturbation theory
which is subject to contamination. Clearly, the contamination
is of the same order in V as in ¥,, as noted by other
authors.”** However, the presence of the energy denomina-
tor R ™! indicates that numerically, the contamination may be
more appropriately grouped in the next higher order, be-
cause, as noted by Murray and Davidson,'* the energy de-
nominator plays a more important role than V in determining
the size of the perturbation correction. Of course, this is en-

tirely dependent on the size of [S?, H,]. As noted before,
there will be many more H,, terms in RMP and ROMP theory
(relative to ZAPT) that do not commute with S%. Therefore,
except in situations of fortuitous error cancellation, the mag-
nitude of spin contamination will be larger for these methods
than for ZAPT.

Finally, we examine how spin contamination comes
about in the perturbed energy expressions. At second-order,

Ez=<‘1’o|VR_'Vl‘l’o)=(‘1’o|H|i>(i|R"'|i)(i|H|‘1’o(>2,l)

where we have inserted a resolution of the identity as a sum
over determinant eigenfunctions of H, used the fact that
R™! is diagonal in this basis, and used the fact that
(Wo|V]i)=(¥|H|i) (because the sum over i never includes
W¥,). Since ¥, is an S? eigenfunction and H does not break
spin symmetry, there can be only spin pure contributions
from the sum over i. Thus E, contains no contributions from
spin contaminants, as noted previously. (This is not inconsis-
tent with the fact that ¥, is contaminated.) At higher order,
this is no longer the case. For example, at third-order one
contribution will be (see Ref. 24)

(Yol VIR IVINGIR TN VIWo). (22)

First note that (i|V|j)}=(i|H|j) for the off-diagonal elements
(i.€., i# ). Therefore, in the determinant basis spin contami-
nation is not introduced from off-diagonal elements of V.
This is simply a generalization of the situation at second-
order. Clearly, the majority of matrix elements will be off-
diagonal. Second, note that contamination must also arise
from the resolvent R™'. Indeed, this is clearly where the
contamination arises in the first-order wave function (i.e., if
S? commutes with R ™', then ¥, is an eigenfunction of $?).
Another way to view the spin contamination (without loss of
generality) is by the use of a CSF basis. In this case the
resolvent has off-diagonal matrix elements that connect
states of different spin. Thus, in the case of the third-order
contribution above, if we regard the intermediate summa-
tions to be over CSFs rather than determinants (taking into
account that the resolvent is no longer diagonal in this basis),
one sees that contamination may arise only over the central
matrix element of V.

In view of this analysis, it is evident that in a determi-
nant basis spin contamination for ZAPT can arise only from
diagonal matrix elements involving determinants which dif-
fer from the reference determinant ¥, in their singly occu-
pied (spin) orbitals. This is because the only term in H for
ZAPT which breaks spin symmetry is the one involving
those orbitals. Again, the majority of matrix elements in
ZAPT are unaffected by contamination. This is in contrast to
methods such as RMP or ROMP, where all matrix elements
for which spin contamination is possible will contribute
some contamination to a greater or lesser extent. It is thus
apparent that the ZAPT H,, represents a good compromise
between the theoretical desire to minimize spin contamina-
tion and retain a simple Hy, and the practical considerations
of efficiency and good series convergence (based on the
physically appealing model of having two types of singly
occupied orbitals distinguished only by their eigenvalue).
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. IMPLEMENTATIONAL CONSIDERATIONS

Ignoring the integral transformation step, the computa-
tional cost of the RMP and ROMP methods is clearly the
same as standard unrestricted MP theory, due to the different
a and B spatial orbitals. Thus, for the evaluation of E,, the
computational cost of RMP and ROMP will be about three
times that of an analogous closed-shell MP2 calculation, and
this factor will become larger for higher-order energies. The
computational cost for the transformation step is ignored,
since this is a fixed cost and therefore the computational
effort of the higher-order energies will be significantly
greater than that of the transfonnatxon step. We do note,
however, that Knowles et al.’ showed that the transformation
step for the RMP and ROMP methods may be written in a
form in which the computational cost is less than that for the
unrestricted MP case. The computational cost of the OPTI,
OPT2, and ZAPT methods is more complicated, and we be-
gin by examining the second-order energy expressions. We
note first that the molecular orbital canonicalization schemes
defined for OPT1, OPT2, and ZAPT are all the same, and

bt bt
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therefore the molecular orbital integrals are identical for all
three methods. In the following equations i and j shall refer
to doubly occupied spatial molecular orbitals in the reference
function, a and & refer to unoccupied molecular oritals, s
and 1 refer to singly occupied orbitals, and m, n, p. and g
refer to any spatial molecular orbitals. Also, vh? represent
the (mp|nq) two-electron integral in Mulliken notation. It is
necessary to define the different “orbital energies” that are
used. For ZAPT the diagonal elements of the symmeric spin
orbital Fock matrix are €, €,, * and €, , as defined in Egs.
(3). The “orbital energies” for the doubly occupled o-bitals {
and the unoccupied orbitals a for OPT1 and OPT?2 are the
same as those in ZAPT, but the singly occupied “‘orbital
energies” are different. Hence we define £, as

1
fs=§(e:+e;). (23)
Using these definitions, the ZAPT, OPT1, and OPT?2 second-
order energies may be written as

ab rb

b b
AT E KoK® S ViU 43 Y (2v¢ i +2 (2v (20
+ - _— —— — —_—
ia €€ L, € tE—€,— € ijab €,te€—€,— €, sjab '55 te—€,~¢€, ijsk €t€E—€ —¢€
r 1
2 (Ust_v )(U,,—U”) l (Ufj_ i)(vzs'j (24)
4= € +e —€,—¢, 4,.1.“ €te—€ —¢
a pra b1 bt bs ab ab___ ab ab ab__ ab
Eom—lz K{K; S U,y +3 v”v” v (2v = vi) +2 s (2Ug—vi0)
2 = _ + e - — e _ _
297 €€, jbori €& TETE— € T €€ ap €t €€, € ojab € te—€,—¢€,
b b_ . sb '
+2 vfj(zu;?j_ i _E (Uw—vrs )(US,"U,S) l (U”_U )(UJ_U” (25)
oo St E € —6 400 € tel €, %m €item€ €
br b b b b b b b b_ . sh
EQFT! = 2 KiK} > Vv +3 vij (v ~vj7) > v (2ug —vy) +E (2"5 —vji)
ia €€ s/brf5+6j_€h f’ ijab Ei+e}_€“—€b sjab f5+6/_€a_€b ijsb €i+€! f»"—eb
E Ve —viI) (i —vi?) E (vij—v;)(v—v; 26)
4 fs+fl €, €& €+€_fs f! ’

stab ust

where
2 v,

Close examination of Eqgs. (24)-(26) shows that at second-
order the computational cost of OPT1, OPT2, and ZAPT is
essentially identical, and that the only difference between
these theories involves the denominators. In particular, the
difference between ZAPT and OPT2 is very minor—only
involving the second term in Eq. (24) and the third term in
Eq. (25) (note that the second term in ZAPT is split into two
terms for OPT2, where certain of the semidiagonal elements
are treated differently). As it turns out, this minor difference
leads to a rather undesirable feature in the OPT2 formula-

@7

tion. For example, consider a high-spin triplet electronic
state in which the two singly occupied orbitals are different
components of a degenerate molecular orbital, such as the
twisted D,, form of triplet C,H, where the two CH, groups
lie in perpendicular planes or the X 32; state of O,. Exami-
nation of the second and third terms of Eq. (25) shows that
when s#r the contribution to the second-order enegy is
different than if s = even though s and r are simply ditferent
components of a degenerate molecular orbital. This leads to
ESPT? being noninvariant with respect to orbital mixinzs be-
tween s and 7. For example, for D, triplet C,H, we obtain
either —0.221 286 or —0.222 672 simply by running the cal-
culation in the D; or C,, subgroups, respectively (performed
at the geometry reported in Ref. 5, using the 6-31G* basis
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set). In C, symmetry or when the degenerate orbitals are
within the same irreducible representation, we are free to
apply an arbitrary rotation to the components of the degen-
erate orbital, while still maintaining canonical orbitals. Thus
for C,H, we happen to obtain an energy of —0.221 386,
although this can be arbitrarily changed, within limits. We
have shown through explicit calculation that none of the
other methods investigated here exhibit this problem. An-
other example is given by evaluating EST™? for X 32; 0,
using either D,, (—0.371 29) or D, (—0.370 53) symmetry
at r=1.239 A, in a standard DZP basis set. Clearly this is an
undesirable feature, especially when computing vibrational
frequencies about the symmetric point for molecules that
have nontotally symmetric vibrations, such as D,; C,H,,
since this shows that OPT2 energies are not differentiable in
this situation.

In the quest for a perturbation theory applicable to the
relativistic Dirac—Fock equations, Dyall®® has recently pro-
posed a modification in the definition of the OPT2 H, in
which degenerate open-shell orbitals will be treated consis-
tently thereby eliminating this noninvariance. However, the
modified theory moves closer to OPT1 (and further away
from ZAPT) suggesting that the perturbation series will not
converge as well as OPT2 or ZAPT. The interested reader is
referred to Ref. 25 for a more detailed account of this modi-
fied OPT2 approach.

As indicated above, the computational cost of OPTI,
OPT?2, and ZAPT is the same at second-order, but more im-
portantly, this cost is essentially the same as that for an
analogous closed-shell system. For all three methods, the
main cost will arise from the “closed-shell” term, the third
term in Eqgs. (24) and (26) and the fourth term in Eq. (25),
and this term is identical in form and cost to the closed-shell
MP2 energy. Thus, unlike RMP and ROMP, the OPTI,
OPT2, and ZAPT methods all require similar cost to closed-
shell MP theory at second-order. Given the nature of the
first-order wave functions, it is straightforward to show that
this similarity in cost will carry over to the third-order ener-
gies as well (examination of the MP third-order energy
expression”® helps to clarify this point). At fourth order, it
has been pointed out by Murray and Handy"® that because of
the nature of the OPT2 H, the factorization of the contribu-
tion from quadruple excitations that reduces the cost from
order N® to order N® (where N is the number of molecular
orbitals) is not possible. However, this lack of factorization
only applies to a small number of terms where an open-shell
orbital has a dual function as both occupied and virtual. Thus
the cost of OPT2 at fourth order will not be much greater
than that of ZAPT.

Given the similarity of H, for OPT1 and ZAPT (men-
tioned earlier), it is reasonable to conclude that the compu-
tational cost of OPT1 will either be similar to that of ZAPT
at all orders or less than that of ZAPT. In order to evaluate
the cost for ZAPT at higher orders (higher than third), it is
useful to consider the discussion of the symmetry properties
of wave functions constructed from symmetric spin orbitals
presented in Ref. 20. From this discussion it is apparent that
when an excitation level appears for the first time in an nth-
order wave function, the symmetry relationship for the

Lee et al.: Hartree-Fock perturbation theory

“closed-shell” amplitudes (i.e., those amplitudes that are in-
dexed only by doubly occupied and unoccupied orbitals in
the reference function—these make up the majority of the
amplitudes) that multiply determinants from this excitation
level will be identical to those in standard closed-shell MP
theory. Because the limiting step in computational cost for a
given E, will always arise from an excitation level first ap-
pearing in the (n—1)/2-order wave function for n odd, and
n/2-order wave function for n even, it is clear that the lim-
iting computational cost for ZAPT will always be the same
as that for closed-shell MP theory. However, it is also appar-
ent from the discussion in Ref. 20 that because the relation-
ships among the “closed-shell” amplitudes become more
complicated in subsequent perturbed wave functions, the
lower-order computational cost will increase. For example,
for fourth-order the N7 cost of ZAPT will be the same as for
closed-shell fourth-order MP theory, but the number of NS
steps will be larger for ZAPT than for closed-shell theory.
The arguments presented herein may be easily verified by
examination of the spin—orbital equations®’ for the N7 steps
in fourth-order MP theory.

No mention has yet been made of the so-called “direct”
perturbation theory implementations.?®%° These are methods
in which atomic orbital integrals are computed as they are
needed, and are not stored on disk. In terms of computational
cost, the OPT1, OPT2, and ZAPT methods have an obvious
advantage over the RMP and ROMP methods as the former
have only one set of spatial molecular orbitals whereas the
latter have two sets. Moreover, for the very same reasons, the
application of analytical gradient theory to OPT1, OPT2, and
ZAPT will be much simpler and will lead to much more
efficient formula than for RMP and ROMP.

In summary, at low orders of perturbation theory (second
and third) the RHF open-shell perturbation theories dis-
cussed here will increase in computational effort in the order
OPT1=0PT2=ZAPT<RMP=ROMP, and OPT1, OPT2,
and ZAPT will exhibit computational cost similar to closed-
shell MP theory. At fourth-order, the order of increasing cost
will be closed-shell MP theory ~OPT1=~ZAPT~OPT2
<RMP=ROMP. Based on the symmetry properties of wave
functions constructed from symmetric spin orbitals, it has
been argued that the limiting computational step for ZAPT
will always be similar in cost to that for closed-shell MP
theory, but that the computational effort in lower order steps
will be larger for ZAPT relative to closed-shell MP theory.

IV. NUMERICAL COMPARISONS

As a first comparison of the various RHF open-shell per-
turbation theories, we have examined the equilibrium struc-
tures and harmonic vibrational frequencies of X 323_ 0,,
a’l, C,, X=* CN, X i1 NO, X B, CH,, X ’B, NH,,
X ?A, BH,, X ?B, H,0", X ?’A” HNF, and X ?A, NO,, using
both the triple zeta with two sets of polarization functions
(TZ2P) and TZ2P plus an additional f function on the heavy
atoms and a d function on H (TZ2Pf) basis sets. The TZ2P
basis sets are Dunning’s30 (5s4p/3s) contractions of
Huzinaga’s®' (10s6p/5s) primitive sets. All of the polariza-
tion function orbital exponents are contained in Ref. 32. In
all calculations, the heavy atom core 1s-like molecular orbit-
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TABLE 1. Comparison of second-order perturbation theory energies (£}, equilibrium geometries, and vibra-

tional frequencies (cm™') for O,, C,, CN, and NO.*

ZAPT OPT1 OPT2 RMP ROMP Expt.?

0,/TZ2P

E° 0.099 056 0.147 149 0.105 476 0.105 310 0.110 494

r 1.2476 1.3551 1.2521 1.2618 1.2668 1.2075

@ 1304.4 606.8 1283.9 1200.1 1168.5 1580.2
O,/TZ2Pf

E* 0.139 857 0.186 394 0.146 244 0.145914 0.150 986

r 1.2376 1.3192 1.2418 1.2499 1.2542 1.2075

I 1368.9 807.6 1348.7 1273.3 1244.4 1580.2
CTZ2P

E® 0.734 180 0.763 275 0.737 640 0.739 923 0.741 911

r 1.3169 1.3260 13182 1.3198 1.3199 1.3119

w 1640.8 1598.8 1634.2 1626.6 1627.9 1641.4
Cy/TZ2Pf

E* 0.753 186 0.782 656 0.756 695 0.758 947 0.760 963

r 1.3164 1.3254 1.3177 1.3192 1.3193 1.3119

w 1650.3 1609.1 1643.7 1636.4 1637.7 1641.4
CN/TZ2P

E* 0.524 994 0.535513 0.526 934 0.527 170 0.526 073

r 1.1871 1.1980 1.1880 1.1902 1.1886 11718

w 1854.5 1732.0 1844.5 1816.8 1832.7 2068.6
CN/TZ2Pf

E* 0.548 818 0.559 547 0.550 772 0.551 026 0.549914

r 1.1878 1.1989 1.1887 1.1910 1.1893 1.1718

w 1853.7 1729.1 1843.3 1815.7 1831.1 2068.6
NO/TZ2P

Ef 0.676 150 0.689 559 0.678 214 0.677 479 0.678 571

r 1.1579 1.1638 1.1585 1.1597 1.1585 1.1508

w 1895.8 1866 .3 1895.6 1882.3 1899.9 1904.2
NO/TZ2Pf

Ef 0.711 902 0.725 404 0.713 980 0.713 253 0.714 333

r 1.1559 1.1616 1.1565 1.1577 1.1564 1.1508

I 1923.6 1894.4 1923.2 1910.1 1927.5 1904.2

*Bond lengths in A. Electronic states are X 33 £a

X ?%*, and X ’II for O,, C,, CN, and NO, respectively.

PReference 35.
“The energy is reported as —(E + 150).

als were frozen, and six-component 4 functions and ten-
component f functions were used. In the presentation of the
theoretical geometries and harmonic frequencies, more deci-
mal places are included than is normally considered relevant
in order to distinguish between the various perturbation theo-
ries for those systems that display only small differences.
The calculations were performed either with programs devel-
oped at Daresbury Laboratory that are interfaced to the
SEWARD (Ref. 33) integral program, or with programs devel-
oped at NASA Ames Research Center, some of which are
interfaced to the MOLECULE-SWEDEN (Ref. 34) program sys-
tem.

The equilibrium bond distances and harmonic frequen-
cies of the diatomics, obtained with the various methods, are
contained in Table 1. For comparison, the experimental
quantities*® are also included. Examination of Table I shows
that the OPT1 method yields the least reliable results, and
also gives results that are significantly different from those of
the other methods. In particular, r, for O, is 0.15-0.12 A too
long and w, is 700-900 cm™' too low. Based on the earlier
assertions that the OPT1 perturbation series displays erratic
behavior,'” it is not too surprising that OPT1 yields the poor-
est results.

%The energy is reported as —(E+75).
°The energy is reported as —(E +92).
“The energy is reported as —(E + 129).

The agreement among the other methods for the bond
distances and frequencies is generally good, with the only
exception being O,. For O,, the OPT2 and ZAPT me'hods
show markedly better performance than the RMP and ROMP
methods, although the difference between experiment and
the OPT2 and ZAPT results is still rather large. It has been
shown previously that second-order perturbation theory does
not perform well for ground state O,, but in many instances
this type of molecule is useful to better elucidate the differ-
ences between perturbation theory methods that are sirilar.
In other words, a “difficult molecule” such as O, magnifies
the differences between the various methods, and gives a
better indication of how easily each method breaks down.
The agreement between experiment and the ZAPT, OPT2,
RMP, and ROMP methods for C, and NO is quite good For
CN, the agreement is generally much better than for O,. The
only exception is for the harmonic frequency (with the
TZ2Pf basis set) where the error for both molecules is about
200-300 cm ™.

The equilibrium structures and harmonic vibrational fre-
quencies for CH,, NH,, BH,, H,0%, HNF, and NO, are
presented in Tables II-VII, respectively. Examination of
these again shows that the OPT] equilibrium geometries and
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TABLE II. Comparison of second-order perturbation theory energies (E,),
equilibrium geometries, and vibrational frequencies (cm™') for X *B, CH, *

Lee et al.: Hartree-Fock perturbation theory

TABLE IV. Comparison of second-order perturbation theory energies (E,),
equilibrium geometries, and vibrational frequencies (cm ') for X 24, BH, *

ZAPT  OPTI OPT2 RMP  ROMP  Expt’ ZAPT  OPTI OPT2 RMP  ROMP  Expt’
TZ2P TZ2P
E 0045431 0054979 0047228 0.047494 0.047 192 E 0.836394 0.839213 0.836861 0836922 0.836772
ren 10723 10741 10726 10732 10725 10750 rgy 1.1834 11842 11834 11837 11834  L.181
£HCH 13257 13310 13298 13241 13281 13388  /HBH 12834 12851 12851 12831 12839 131
wfa) 32119 31909 32087 32017 32089 30207  wfla,) 26395 26318 26390 26361 26387
wila) 11649 11417 11483 11682 11563  963. wya)) 10575 10484  1050.1 10571 10554
wy(by) 34443 34265 34430 34343 34434 31525  wy(b,) 28022 27957 28025 27991 28018
TZ2Pf TZ2Pf
E 0.056 313 0.066 156 0.058 132 0.058 436 0.058 108 - E 0.843 872 0.846781 0.844 346 0.844 409 0.844 251
reu 10731 1.0749 10733 10739 10734 10750  rgy 1.1836  1.1844 11837 11840  1.1837 .18l
ZHCH 13299 13360 13344 13283 13324 13388  /HBH 12861 12882 12878 12857 12865 I3l
wla) 32120 31914 32091 32019 32089 30207  wila;) 26456 26382 26449 26419 26446
enfa;) 11372 11105 (189 11406 11277  963.] wya;) 10420 10316 10343 10418 10400
wyby) 34462 34292 34454 34365 34453 31525 an(by) 28097 28038 28098 28064 28091

Bond lengths in A and angles in degrees. The energy is reported as ~(E
+39).

PExperimental equilibrium geometry and fundamental frequencies from Ref.
44

harmonic frequencies deviate most from the other perturba-
tion theories, although the differences between all of the
methods are fairly small for this set of molecules, especially
for the dihydrides. The results for the NO, molecule display
the largest differences, but even here the maximum differ-
ences between the ZAPT, OPT2, RMP, and ROMP methods
is only 0.0021 A, 0.36°, and 17.1 cm™'. Based on this set of
triatomics, it is evident that there is not much to choose
between the various perturbation theories.

The agreement between theory and experiment is gener-
ally good for this set of molecules, especially taking into
account that most of the experimental results refer to vibra-
tionally averaged structures and fundamental frequencies. It
should be noted that it is typical for the anharmonic correc-
tion to the bending modes of dihydrides to be reasonably
large (e.g., see Refs. 36,37). In addition, the anharmonic cor-

TABLE III. Comparison of second-order perturbation theory energies (E,),
equilibrium geometries, and vibrational frequencies (cm~') for X 2B, NH, .*

*Bond lengths in A and angles in degrees. The energy is reported as —(E
+25).
®Vibrationally averaged structure from Ref. 47.

rection for the bending mode in 3B, CH, is probably even
larger than normal owing to the very flat bending potential
for this molecule. The experimental data available for NO,
include harmonic frequencies, and for this system the agree-
ment between theory and experiment for w, and w, is rea-
sonably good. The agreement for the antisymmetric N-O
stretch w,, however, is not very good, with the ab initio
results being consistently about 150 cm ™' too high. This type
of behavior for second-order perturbation theory has been
noted previously** % for the closed-shell species HONO,,
CH, ONO,, and CIONO;,, and so is not limited to the open-
shell system NO,, but seems to be a feature of the NO,
moiety.

Examination of the second-order energies in Tables
I-VII shows that in every case the OPT1 method yields the
lowest energy, and that the ZAPT method gives the highest

TABLE V. Comparison of second-order perturbation theory energies (E,),
equilibrium geometries, and vibrational frequencies (cm™') for X ?B,
H,0" *

ZAPT  OPTI OPT2 RMP  ROMP  Expt’ ZAPT  OPTI OPT2 RMP  ROMP  Expt®
TZ2P TZ2P
E 0.758 821 0765216 0.760 189 0.759 629 0.759 905 E 0.843602 0.850049 0845112 0.844452 0844664 -
NH 10207 10219 10210 10209 10209 1024  roy 09968 09979 09970 09970 09970  0.999
ZHNH 10307 10300  103.07 10307 10307 1033 £HOH 10910 10904  109.12 10909  109.09 1105
wfa) 34533 34408 34507 34517 34519 32194  wfe;) 34305 34188 34287 34292 34289 32130
wfla) 15629 15588 15624 15624 15624 14973  wyla,) 14901 14871 14894 14899 14897 14084
wyby) 35558 35434 35530 35542 35544 33011 aylby) 34897 34783 3487.8 34884 34881 3259.0
TZ2Pf TZ2Pf
E 0.776395 0783044 0777809 0777230 0777501 - E 0.863 862 0.870594 0.865430 0.864 749 0864949 -~
riH 10214 1.0225 10216 10215 10215 1024  roy 09978 09988 09979 09979 09979  0.995
ZHNH 10301 10294  103.00 10299  103.00 1033 £HOH 10933 10927 10935 10932 10932 1105
wfa)) 34500 34379 34474 34484 34487 32194  wia)) 34271 34158 34252 34258 34256 32130
wpfa) 15506 15467  1550.1 15502 1550.1 14973 anla,) 14725 14695 14717 14723 14721 14084
wyby) 35574 35453 35545 35556 35560 330l  wy(by) 34888  3477.6  3486.8 34875 34873  3259.0

“Bond lengths in A and angles in degrees. The energy is reported as —(E
+55).

PVibrationally averaged geometry from Ref. 45 and fundamental frequencies
from Ref. 46.

Bond lengths in A and angles in degrees. The energy is reported as —(E
+75).

bVibrationally averaged structure from Ref. 47 and fundamental frequencies
from Ref. 48.
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TABLE V1. Comparison of second-order perturbation theory energies (E,),
equilibrium geometries, and vibrational frequencies (cm ™) for X 24” HNE?

TABLE VII. Comparison of second-order perturbation theory energies (E£,),
equilibrium geometries, and vibrational frequencies (cm ™) for X 22 1 NO, *

ZAPT  OPTI OPT2 RMP  ROMP  Expt? ZAPT  OPTI OPT2 RMP  ROMP  Expt?
TZ2P TZ2P
E 0819922 0.828485 0.821 658 0.821 256 0.821 045 E 0.747997 0.767 267 0.750448 0.750333 0.751 396
rHN 1.0256 10269  1.0259 10258  1.0258 (1.06) no 12075 12159 12087 12090  1.2095 1.1946
NF 13732 13715 13730 13739 13729 137 ZONO 13258 13172 13240 13259 13223 13385
ZHNF 10000  100.00  100.00 99.96 99.99 105 wla) 13085 12669 13009 13023 12058 13488
wla’) 34140 33986 34110 34123 34125 3167 wyla;)) 7695 758.7 768.3 766.5 767.6  759.5
wa’) 10380 10468 10387 10386 10382 1015 wiby) 18010 17856 17839 17972 17922 16714
wya’) 14839 14826 14834 14830 14839 1439 TZ2Pf
TZ2Pf E 0.807514 0.826652 0.809935 0.809835 0.810867 ---
E 0.861095 0.869909 0.862866 0.862452 0.862247 - No 1.2037 12116  1.2048 12051  1.2056 1.1946
N 1.0268  1.0281 1.0271 10269  1.0270  (1.06) ZONO  132.86 13204 13270 13289 13253 [33.85
nF 13622 13608  1.3621 13628 13619  1.37 wfla)) 13310 12909 13240 13250  1319.1 13488
<HNF 10023 10024 10024 10020 10025 105 wyfa,) 7682 757.4 766.9 765.2 7663 759.5
w(e’) 34059  3391.0 34032 34047 34047 3167 wy(by) 18389 18227 18230 18350 18306 16714
wia’) 10669 10756 10677 10677  1067.6 1015
wy(a’) 14839 1482.5 1483.4 1483.1 14840 1439 *Bond lengths in A and angles in degrees. The energy is reported s —(E

*Bond lengths in A and angles in degrees. The energy is reported as —(E
+154). The HNF bend is given by w,.

"Vlbrationally averaged structure from Ref. 47 (the NH bond distance was
assumed) and fundamental frequencies from Ref. 49.

energy. The fact that the OPT1 method yields the lowest
energy is consistent with earlier studies,'*'> which assert that
the OPT1 perturbation series does not converge very rapidly,
and that this is due to *‘small denominators” leading to a
larger (in magnitude) second-order energy. Moreover, the
conclusions of studies in which the convergence of perturba-
tion series was investigated would suggest that the ZAPT
series should display the most rapid convergence of the
open-shell perturbation theories studied here because its
smallest (in magnitude) second-order energy suggests that it
possesses the “largest denominators.”

Finally, in Table VIII the singlet—triplet energy differ-
ences for CH, and SiH, are presented and compared with full
configuration interaction (FCI) values.*'? Before discussing
the results, it is important to consider a few points. It is
generally accepted that due to the Fermi-hole concept,”® the
self-consistent-field (SCF) level of theory tends to provide a
better description of high-spin states relative to low-spin
states. In other words, in the present example there is gener-
ally more electron correlation present in the singlet states
relative to the triplet states. Therefore, since the ZAPT
method usually gives the smallest (in magnitude) second-
order energy and the OPT1 method generally gives the larg-
est, it may be expected that the ZAPT method will yield

+204),
*Equilibrium geometry from Ref. 50 and harmonic vibrational freqaencies
from Ref. 51.

singlet—triplet splittings that are closest to the FCI value
while the OPT1 method will yield the worst agreement. It
should be emphasized that an implicit assumption in this
assertion is that the open- and closed-shell perturbation theo-
ries will recover about the same percentage of the total cor-
relation energy at second-order. Examination of the resuits in
Table VIII shows that in fact these expectations are ccrrect.
The OPT1 singlet—triplet energy differences are always fur-
thest from the FCI results, while the ZAPT results are always
in closest agreement. However, it should be noted that at the
equilibrium geometries the differences between ZAPT and
the OPT2, RMP, and ROMP methods is much smaller than
the difference with respect to the FCI method. Thus, ‘while
the ZAPT method should generally perform better in deter-
mining energy separations between electronic states or dif-
fering spin, the overall error will often be much larger than
the differences between the ZAPT, OPT2, RMP, and ROMP
methods.

V. CONCLUSIONS

Various single-reference perturbation theories based on a
RHF reference function have been investigated and con-
trasted. These include the OPT1, OPT2, RMP (also known as
ROHF-MBPT), ROMP, and ZAPT methods. The spin con-
tamination present in the RMP, ROMP, and ZAPT nth-crder

TABLE VIII. Comparison of second-order perturbation theory and FCI singlet-triplet splittings for CH, and

SiH; (kcal/mol).

SCF OPTI OPT2 RMP ROMP ZAPT FCP*
CHy(A 3B -'A))
r, 26.136 21.920 17.989 18.048 17.931 17072 11971
SiH)(A 'A,-%B))
1.0%r, 5.488 11.462 14.332 14.146 14.363 15022 18.343
1.5%r, 9.885 9.402 13.619 14.495 14.776 16255  17.572
2.0%r, —-19.068  -19979  -16573 -8292 -9.009 —5232 4310

*From Ref. 41 for CH, and Ref. 42 for SiH,. See these references for details of the calculations.
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wave functions has been explicitly shown to result from the
fact that $ does not commute with H, and it has also been
shown that there are many more terms in the H, for RMP
and ROMP that do not commute with 5° than in the H,, for
ZAPT. The computational costs of the various methods have
been discussed, and it is shown that the cost increases ac-
cording to OPT1=~0OPT2=~ZAPT<RMP=ROMP, and that
the cost for the OPT1, OPT2, and ZAPT methods is similar
to closed-shell MP theory. Furthermore, based on the sym-
metry properties of wave functions constructed from sym-
metric spin orbitals, it has been argued that the limiting com-
putational step for ZAPT will be similar in cost to that for
closed-shell MP theory, but that the computational effort in
less expensive steps (i.e., not limiting steps) will be larger for
ZAPT relative to closed-shell MP theory. It is also noted that
due to the adoption of only one set of spatial molecular or-
bitals, the OPT1, OPT2, and ZAPT methods have a major
computational advantage over the RMP and ROMP methods
for the implementation of so-called ‘““direct’”” schemes and the
application of analytical gradient theory. Examination of the
second-order energy expression for OPT2 has revealed that
OPT? has the undesirable property of not being invariant to
orbital mixings between open-shell components of a degen-
erate molecular orbital. Two explicit examples of the magni-
tude of this noninvariance have been presented.

Finally, equilibrium geometries and harmonic vibrational
frequencies of several diatomics and triatomics have been
determined at second-order, and these results have shown
that in general the OPT! method yields the least reliable
values while the differences between the other methods is
usually small. The agreement between experiment and theory
(for the ZAPT, OPT2, RMP, and ROMP methods) is shown
to be quite good provided that the molecule is reasonably
well described by the single determinant reference function.
As electron correlation in the molecule becomes more diffi-
cult to describe properly, the RMP and ROMP methods ap-
pear to break down more readily than the OPT2 and ZAPT
methods, although by this stage it is evident that second-
order perturbation theory is not really adequate. Singlet—
triplet energy separations for CH, and SiH, are also pre-
sented and compared to FCl values. The ZAPT method
yields the best singlet—triplet splittings, and an explanation
for this is presented (it is also explained why OPTI singlet—
triplet energy differences will usually be the poorest). How-
ever, it is also noted that the differences between ZAPT and
FCI are usually much larger than the differences between
ZAPT and the OPT2, RMP, and ROMP methods.

Based on all of the considerations contained in this
study, it is concluded that the ZAPT approach is probably the
method of choice. The difference in results between ZAPT
and RMP, ROMP, and OPT?2 is usually small, and the results
tend to be better for ZAPT (and OPT2) relative to RMP and
ROMP when the differences become larger. OPT2 has been
shown to have an undesirable feature concerning noninvari-
ance to orbital mixings (for degenerate open-shell orbitals)
that does not plague ZAPT. Most importantly, the computa-
tional cost of ZAPT is similar to that for closed-shell MP
theory, and the application of so-called “‘direct” procedures

Lee et al.: Hartree—Fock perturbation theory

and analytical gradient theory is much simpler for ZAPT
than for RMP or ROMP theory.
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